Post op care and topical therapies

Rodney J. Schlosser, MD

Professor and Director of Rhinology Department of Otolaryngology - HNS Medical University of South Carolina Charleston, SC

Post operative care EBRR

Treatment	Grade of EBM	Benefit v harm	Recommend	Protocol
Saline irrigation	В	Benefit	For	Normal saline within 24-48h
Debridement	В	Benefit	For	Sinus debridements post ESS
Systemic steroid	N/A	Equal	Option	Single 1b study
Abx	В	Equal	Option	Short term benefit
INCSpray	Α	Benefit	For	Start post ESS
Off label topical steroid	D	Equal	Option	Single 3b study, 1b pend
Drug eluting spacer/stent	В	Equal	Option	Two level 1b's

Rudmik L, IFAR 2011

Middle meatal dressings

Product	Material	Improvement v no drsg	
Propel implant	Lactide, glycolide copolymers w MMF		
Merocel	Polyvinyl alcohol	Synechiae	
Salman stent	Silicone		
Gelfilm/foam	Gelaton (collagen)		
Floseal	Gelatin/thrombin	Hemostasis/pain	
Surgiflo	Gelatin (collagen)		
Surgicel	Oxidized cellulose		
Merogel	Hyaluronic acid		
Sepragel/pack	HA/CMC	Synechiae, pain, congestion	
Sinufoam	CMC		
MPH	Microporous polysacchardie	Hemostasis	
Chitosan gel	Chitosan/dextran	Synechiae, hemostasis	
Nasopore	Polyurethane foam		
Quixil	Thrombin/fibrinogen		

Postop antibiotics

- Cefuroxime x 2 days: no benefit
- Amox/clav x 2 wks: improved endoscopy and sx

Rudmik L, IFAR 2011

CRS & changing role of surgery?

Remove polyps & inflammatory mucin

Topical steroids

Microbial community Remove organisms/biofilm Topical antimicrobials Mucociliarv clearanceEliminate ostialRobstructionSTopical MCAstimulantsn

Topical therapies

- Delivery to anatomic site (target sinus)
- The proper active agent
- Impact upon lower airway

Bewildering variety?

Prescription versions

What we don't want to become

Topical drug considerations Macro factors

- Surgical state
- Delivery device & volume
- Patient position

Impact of surgery

Surgical State	Findings
Unoperated	No consistent delivery regardless of device
Balloon	SphenoidIFrontalMaxillaryI
ESS	Delivery increases especially with large volume
Endoscopic Lothrop or medial maxillectomy	Possible benefit

- Cadaver (n=5) and human studies (n=3)
- Conclusion: ESS optimal, critical os size 4-5 mm

Thomas III, WT et al, IFAR 2013 (in press)

Critical os size

Brenner etal, IFAR 2012

What type of surgery is needed for postop topical therapies?

Balloon

MIST

FESS

Ventilation ≠ access for topical treatments Prior to successful ESS, topical therapies are ONLY nasal cavity treatments

Access for topical treatments

Harvey RJ, Schlosser RJ. J OHNS, 2009

Impact of device

Device	Findings
Spray/Drops	Little sinus distribution with either technique. Some delivery to olfactory cleft/MT that may be position dependent.
Atomizer/ Nebulizer	Pulsating aerosols/nebs with some <i>limited</i> distribution to sinuses
Squeeze bottle/ Neti Pot	Larger volumes have best distribution

- Cadaver (n=5) and human studies (n=15)
- Recommend for: Large volume devices post ESS
- Recommend against: Low volume devices do not consistently reach sinuses

Combined effects of surgery & volume

Harvey RJ et al, OHNS 2009

Impact of position

Position	Findings	
Head upright	Inferior meatus with gtt	Ja. Lying Head Back (LHB)
LHB (Mygind)	Middle meatus	A Contraction
LHL (Ragan)	Middle meatus	3b. Lateral Head Low (LHL)
HDF (Mecca)	Increased superior distribution (Olfactory, limited ethmoid/max)	Jc. Head-Down and Forward (HDF)

- Cadaver (n=3) & human (n=7) studies
- Recommend for: HDF with high volume devices
- Recommend for: LHB or LHL with drops and sprays

Thomas III, WT et al, IFAR 2013 (in press)

Drops and LHB Position

Now that we can reach the sinuses, which active agent ?

- Mechanical
 - Saline
 - Baby Shampoo

- Pharmaceutical
 - Steroids
 - Antibiotic
 - Mupirocin
 - Gentamycin / Tobramycin
 - Ampho B
 - Novel agents
 - Honey
 - Surfactants
 - Dornase Alpha

What's the goal?

Mechanical Effects MCC Mucus rheology Surfactants Removal of Ag

Drug Delivery

Absorption

Distribution

Summary of active agents

Agent	Grade of evidence	Benefit vs Harm	Recommendation Level	Protocol
Saline	B	Benefit	Recommend	Use saline as adjunct to other topical therapies
Standard INCS	A	Benefit	Strong recommendation	Use in CRSsNP and CRSwNP
Off label steroid	С	Equal	Option	Irrigation vs drop

Rudmik L, et al, IFAR 2012

Topical steroids

- Meta-analyses demonstrate benefit in both CRSwNP and CRSsNP with greatest benefit with direct sinus delivery
- Safety with steroid irrigations

Snidvongs K, etal Cochrane 2011 Rudmik L, etal Laryngoscope 2012 Welch K, etal, AJRA 2010 Steinke JW, etal JACI 2009

Surgery improves topical steroid delivery

A Polyp score by sinus surgery status

	p.	acaba		st	eroid			Std. Mean Difference	Std. Mean Difference
Study or Submoup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
1.16.1 patients with prior sinus surgery									
Dingsor 1985	1.7	1.9	21	0.4	0.9	20	17.6%	0.85 [0.21, 1.49]	
Hartwig 1988	1.38	1.39	31	0.5	0.74	32	27.5%	0.78 [0.27, 1.30]	
Lund 1998	4	4.44	9	2	4.44	10	8.7%	0.43 [-0.48, 1.34]	
Subtotal (95% CI)			61			62	53.9%	0.75 [0.38, 1.12]	
Heterogeneity: Chi ² = ().58, df :	= 2 (P	= 0.75);	l² = 0%	6				
Test for overall effect:	Z = 3.99	(P < (0.0001)						
1.16.2 patients without	ut sinus	surge	ery						
Johansson 2002	1.8	0.62	48	1.69	0.64	50	46.1%	0.17 [-0.22, 0.57]	1
Subtotal (95% CI)			48			50	46.1%	0.17 [-0.22, 0.57]	•
Heterogeneity: Not app	olicable								
Test for overall effect: Z = 0.86 (P = 0.39)									
Total (95% CI)			109			112	100.0%	0 48 [0 21, 0 75]	
		0 (D	100	12 00	~	112	100.070	0.40 [0.21, 0.75]	
Heterogeneity: $Chi^{2} = 4.93$, $dt = 3$ (P = 0.18); $i^{2} = 39\%$							-4 -2 0 2 4		
Test for overall effect: Z = 3.51 (P = 0.0004)						Favours placebo Favours steroid			
Test for subgroup diffe	rences:	Chi ² =	4.35, df	f = 1 (P	= 0.04	1) , ² = 1	77.0%		

Fokkens W etal EPOS 2012

Steroid irrigations

- N=111 post ESS pts (56% CRSwNP)
- BUD or BET (1mg qd) via squeeze bottle
- 1 year f/u improved SNOT22, endoscopy
- Most improvement in those with high eosinophilia
- UNC DBPCT no benefit – needs further study

Snidvongs K, et al, IFAR 2012

FIGURE 4. Endoscopy score improvement by tissue eosinophil (/HPF); asterisk (*) indicates p < 0.001 when posttreatment was compared with baseline; number sign (#) indicates p < 0.05 when mean change in endoscopy score was compared between patients with high tissue eosinophilia (≥ 10 /HPF) and those without.

Safety and drug absorption?

- What % of total irrigation solution remains?
- What is safe dose?

How much solution remains in the sinuses?

How much solution remains in the sinuses?

2.5±1.5%

Benefit to patient

Safety of budesonide irrigations

- Resputes (0.5 mg/2 ml) BID = 1 mg/day
- 3% retained volume = 30 mcg drug
- Rhinocort: 32 mcg/spray=128 mcg/day

- Current irrigations are about ¼ dose of topical spray!
- Probably doesn't apply to drops which have higher retention

Other methods for getting steroid to the sinus cavity

Mometasone bioresorbable stent

- Meta-analysis, 2
 DBRCTs, 143 pts
- Endoscopy, adhesions, oral steroid need improved
- Cost/duration of effect?

(a) control stent on right at day 0

(b) drug-eluting stent on left at day 0

(d) drug-eluting side at day 30

Han JK, et al, IFAR 2012

Summary of active agents

Agent	Grade of evidence	Benefit vs Harm	Recommend ation Level	Protocol
Antibiotic	В	Equal	Option vs recommend against	Variable, high volumes appear to be better
Antifungal	A-	Harm	Recommend against	
Alternative agents	С	N/A	N/A	Surfactants, honey, xylitol

Rudmik L, etal, IFAR 2012

The future of topical therapeutics

- Great potential to improve "micro" factors
 - Newer active agents with fewer side effects
 - Modulation of wound healing
 - Better carriers to optimize dosing and concentration protocols
- Better understanding of "macro" factors, such as role of surgery, delivery device, target sinus

CRS treatments

- Approach based upon pathophysiology & evidence
- Topical therapies likely to make a major impact
- Evidence supports large volume delivery of saline and steroids in post operative patients
- Other agents and delivery devices have limited evidence to support their use
- May improve lower airway disease

